THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics

MATH 2050A Tutorial 3

1. Evaluate the limit

$$
\lim _{n} \frac{5 n^{2}+2 n+1}{3 n^{2}+n+2}
$$

by definition.
2. Let $A \subseteq \mathbb{R}$. Suppose $\sup A=\alpha \in \mathbb{R}$.
(a) Show that there exists a sequence $\left(a_{n}\right)$ in A converging to α.
(b) Show that there exists a monotone increasing sequence $\left(b_{n}\right)$ in A converging to α.
3. Let $a>0$. Show that

$$
\lim _{n} \frac{a^{n}}{n!}=0
$$

4. Let $p \in \mathbb{N}$ and $b \in \mathbb{R}$ satisfy $0<b<1$. Show that $\lim \left(n^{p} b^{n}\right)=0$.
5. Let $\left(x_{n}\right)$ be a sequence of positive real numbers. Suppose $\lim \sqrt[n]{x_{n}}=L$, where L is a non-negative real number.
(a) If $0 \leq L<1$, show that $\lim x_{n}=0$.
(b) If $L>1$, show that $\left(x_{n}\right)$ is divergent.
(c) What happens if $L=1$?
6. Let $\left(x_{n}\right)$ be a sequence of positive real numbers. Suppose $\lim x_{n+1} / x_{n}=L$, where L is a non-negative real number. Show that $\lim \sqrt[n]{x_{n}}=L$.
